General Information:

- Most of the problems on the test are multiple choice.
- The test is much shorter than this review. The Arithmetic and Basic Skills Placement test has about 30 problems and this review has more than 50 problems.
- There are a couple of fraction problems on the tests which require the answer to be submitted in a different manner. For those problems the numerator and denominator of the answer must be submitted in two separate boxes. For example if the answer is 5/6 the 5 must be submitted in the first box 5 and the 6 must be submitted in the second box 6.

Topics: Examples

- 1. Simplifying Fractions: Simplify the following fractions $\frac{12}{18}$ $\frac{35}{105}$
- 2. Converting between Improper Fractions and Mixed Numbers:

Change the following to Mixed or Whole Numbers.

$$\frac{17}{4}$$

Change the following to Improper Fractions.

$$4\frac{3}{8}$$

$$8\frac{2}{9}$$

3. Multiplying Fractions and Mixed Numbers

$$5\frac{1}{3} \times \frac{3}{4}$$

$$\frac{16}{35} \times \frac{14}{24}$$

$$\frac{9}{10} \times \frac{5}{8}$$

$$3\frac{5}{6} \times 2\frac{2}{5}$$

4. Dividing Fractions and Mixed Numbers

$$\frac{7}{12} \div \frac{14}{15}$$

$$5\frac{3}{5} \div 2\frac{1}{10}$$

$$\frac{1\frac{3}{4}}{1\frac{3}{8}}$$

5. Adding and Subtracting Fractions

$$\frac{7}{8} - \frac{2}{3}$$

$$\frac{1}{3} + \frac{1}{5} + \frac{1}{10}$$

$$\frac{3}{8} + \frac{5}{12} + \frac{7}{18}$$

6. Converting Fractions to Decimal Numbers

Convert the following to decimal numbers:

$$\frac{27}{40}$$

7. Comparing Fractions

Which is the largest fraction in each set?

$$\frac{8}{9}$$
 $\frac{7}{3}$

8. Evaluating Algebraic Expressions with Exponents

Let a = -2, b = 5, c = -4, and d = 6 and evaluate each of the expressions below.

$$3a^2 + 4c$$

$$\frac{2b-3d}{2a}$$

9. Solving a formula for an unknown variable.

Given $F = \frac{9}{5}C + 32$ if F = 77 then what is the value of C?

Given
$$P = 2L + 2W$$
 if $P = 60$ and $W = 12$ then what is the value of L?

10. Operations with Positive and Negative Numbers including Order of Operations Evaluate each of the following:

$$-2^2 - (-3)^2$$

$$3 \times 2^2 + 4(-3)^2$$

$$-12 + (-7)(-5)$$

$$\frac{(-2)(-3)+(-7)(6)}{7-16}$$

11. Percent Problems

Calculating percentage from a table:

Consider the following table of student grades on a test. Answer each question to the nearest percent.

Exam Grade	Number of Students
Α	4
В	10
С	12
D	3
F	2

- a) What percent of the students had an A on the exam?
- b) What percent of students had a B or better on the exam?
- c) What percent of the students had a grade lower than a C on the exam?

Percent word problems:

- a) The population of a town increases 4.2% in one year. If the original population was 19,500, what is the population after the increase?
- b) Carolyn's salary is \$5,220 per month. If deductions average 24.6%, what is her take home pay?

12. Ration problems:

Approximately 15 out of 100 people in the United States workforce carpool to work. There are an estimated 320,000 people in the workforce of a given city. How many of these people are expected to be in carpools?

13. Solving Linear equations:

a.
$$6x - 5 = 3x + 13$$

b.
$$\frac{3}{4}x - 2 = 7$$

c.
$$3x - 15 = 7x - 10$$

14. Solving proportions:

a.
$$\frac{55}{88} = \frac{10}{x}$$

- 15. Decimal Number operations:
 - a. You made charges of \$37.25, \$8.78, and \$53.45 on a credit card. If you made a payment of \$73.50, how much will you still owe?
 - b. The thicknesses (in millimeters) of several parts are as follows: 30.9, 30.7, 29, 30.6, 29.3, 31.2, and 29.3. Calculate the mean to the nearest hundredth.
- 16. Find both the perimeter and the area of the figures shown. (measurements in meters)

- 17. Creating a formula or equation from a written description:
 - a. Four hundred tickets were sold for a school play. General admission tickets were \$4 while student tickets were \$3. If the total ticket sales were \$1350, how many of each type of ticket are sold?
 - i. First create a single variable equation for this problem with x representing the number of general admission tickets sold.
 - ii. Find the number of general admission and student tickets sold.
 - b. Beth bought 40¢ stamps and 15¢ stamps at the post office. If she purchased 60 stamps at a cost of \$19, how many of each kind of stamp did she buy?
 - i. Create a single variable equation for this problem.
 - ii. Solve for the quantity of each type of stamp purchased.

18. Unit price problem:

Which of these prices is the lowest cost per ounce? (1 lb. = 16 oz.)

- a. 12 oz. for \$5.00
- b. 18 oz. for \$6.88
- c. 1 lb. 12 oz. for \$10.16
- d. 2 lb. 8 oz. for \$15.04
- 19. Adding or subtracting polynomials:

a.
$$(3x^2 + 2x - 4) + (2x^2 - 5x + 3)$$

b.
$$(3x^2 + 2x - 4) - (2x^2 - 5x + 3)$$

20. Multiplying Polynomials:

a.
$$5ab(3a^2b - 2ab + 4ab^2)$$

b.
$$(x + 3y)(4x - 5y)$$