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1 Introduction

Count "data frequently arise in real life and are often modelled by a Poisson
distribution. However, it is found sometimes that the number of zeroes in such
a dataset is more than what is allowed by a Poisson model. So, in order to
accommodate the excess of zeroes, a zero-inflated Poisson distribution (ZIP) was
introduced in the literature. See, for example, Cohen (1960), Singh (1963}, Katti
(1965), Goraski (1977), Kemp (1986) and Heilborn (1989). Some interesting
applications of ZIP can also be found in Heilborn and Gibson {1990), Lambert
(1992), Gupta et al. (1996), Saei and McGilchrist (1997), Li et al. (1999)
and Ghosh et al (1999). There have been attempts to generalize the Poisson
distribution in the past, such as the one in Consul and Jain (1973}, and these in
turn have led to generalized versions of ZIP. Angers and Biswas (2003) presented
a Bayesian analysis of such a generalized ZIP model. The Poisson distribution
is well-known for the equality of its mean and variance—a feature not suitable
for many count datasets whose variances exceed their means. This necessitated
the introduction of an overdispersed Poisson (OP) model. See Cox (1983) and
Scollnik (1995), among others. Overdispersed Poisson models have been widely
used for modeling disease data and one can show that a ZIP model is a special
example of OP. Shmueli et al. (2005) revived another variant of the Poisson
distribution, called the Conway-Maxwell-Poisson {CMP) distribution, that had
been introduced earlier by others and demonstrated its usefulness as a model
for discrete data. Later, Kadane et al. (2006) provided a Bayesian analysis
of a CMP model using conjugate priors. The CMP distribution can be easily
extended to a zero-inflated version.

Here we discuss parametric inference results for a ZIP distribution and its
variants mentioned above. We discuss point estimation, hypothesis testing and
Bayesian inference. Much of the existing work cited above came as scparate




developments and are somewhat scattered in the literature. To our knowledge,
there is no such unified presentation of inference methodology for this class of
distributions. However, this is not meant to be a review article. Most of the
results presented here are new {except some basic ones that are quoted from the
references cited). Detailed proofs and derivations are provided wherever possi-
ble. We believe this article will serve as a starting point for future theoretical
and applied rescarch on this interesting family of distributions. The layout of the
paper is as follows. In section 2, we provide some background on the ZIP family
of distributions. In section 3, we derive the conditional and wnconditional distri-
butions of sums of ZIP variables. Section 4 discusses estimation and hypothesis
testing for ZIP data. Section § provides some distributional derivations for the
Conway-Maxwell-Poisson (CMP} distribution, following which, section 6 takes
up the zero-inflated version of CMP. Section 7 is devoted to the zero-inflated
generalized Poissen distribution and we conclude with a section (section 8) on
Baycsian inference for the ZIP model. Some theoretical details are provided in
Appendix 1, while Appendix 2 describes some simulation studies related to the
methodology outlined in section 4.

2 Preliminaries

The basic idea behind a ZIP distribution with parameters ¢ and A is to assign a
higher probability to zero and lower probabilities to other values as compared to
a corresponding Poisson distribution with parameter A, Thus a ZIP distribution
with two parameters is formally defined by:

PX=0=¢+(1-¢)e ™ and

P(X =2)=(1l-¢) e_’\% for 22 >0,
where ¢ is a number between 0 and 1 and A > 0. One can also write this as:

AT

PX=g)=¢I{z=0)+(L-d)e o

(1)
for any non-negative integer , where 7{A) is the indicator function of the event
A.

The above definition is the most standard way of defining a ZIP distribu-
tion. However, there are several other ways of defining it. All of them use two
parameters and are based on simple-minded ways of thinking. We shall discuss
a few of them here.

The first alternative definition is:

P(X=0)=e¢* +vand

(1" AT
P(X_n,)g(l l_c_A)e o for z >0




. So, once again, this ZIP distribution has two parameters y and A and it is
clear that « is nothing but ¢(1 —e~*). This definition is guided by the following
simple-minded intuition: inerease the probability at O by a constant number .
One has to keep in mind that + should be less than 1 — e,

A second way of defining the ZIP distribution is:

P(X =0 =(1+48e* and
& AT
P(X:.’L):(l‘i'a"‘m)ﬂ ';E!"f()11>0
This time, the two parameters are 4 and A and one can show that 4 is nothing
Y
but qﬁ(l;“f\z_l' This definition is guided by the following intuition: increase

[+
the probability at 0 by multiplying the original probability by a mumber bigger
than 1. Of course, one has 1o keep in mind that & should be less than e* — 1.
A third alternative definition of the same distribution is:

P(X=0)=1—e #" 4 ¢" and

I
P(X::v):cﬂ‘-(%‘gn)mfork:l,?,...,

with 0 < » < 1. Here the two parameters are » and A, One can casily observe
that the two parameters of the original ZIPD, namely, (¢, A) can be recovered
from (p, 2} as: d=pp, ¢ =1— e #tie

The mean and variance of ZIPD are given by

BX)=(1-¢)% V(X}={1-4)>1+¢))

The moment generating function M x(¢) and the characteristic function ®x (t)
are given by

A{[X(t) = ¢ + (1 — qb) eﬁ’\+’\ca; @X (t) o ¢ + (1 _ ¢) cf)\+)\e“

Now it should be clear why a ZIP distribution is an example of an overdispersed
Poisson model. Next we look at a weighted version of a Poisson distribution. Tt
is given by

oy WP =y
P (¥ my)mW,

where Y is a usual Poisson random variable. So, if we want to consider the ZIP
distribution as a weighted version of a Poisson distribution,then

wly)
By ¢

for 4 > 0 and




w(0)
Fo(r)] ~ 70

—A

whore § = gig"::%). As a result, denoting E[w(Y)] by A, we have w(0) =
e

A(1 + 8) and w(y) = A(1L ~ ¢) for y > 0. One observes that A can take any

posttive value. So, it is good enough to choose w{)) =14+ 5 and wiy) =1~ ¢
S

for y > 0 where & = ib—(l——m;—)—. Therefore, the ZIP distribution is nothing but
e

a weighted overdispersed Poisson distribution with the weights w(y) chosen as
above for each y > 0.

3 Conditional and Unconditional Distributions of
Sums of ZIP Variables

In order to discuss parametric inference for a ZIP distribution, one has to know
the distribution of the convolution of i.i.d. ZIP wvariables. For this, we first
observe that if X3, Xs,..., X, are independent ZIP variables with X; having
parameters (¢;, X)) for i = 1,2, nand if Z = X3 + - + X, then using
imduction on n,

< - : i - (BAa)?
Pz=2)=][dlz=0+>. > [[0-a) I e X hAEH

i=1 r=1 (iy,...,7p) I=1 J=Llg#d .t

In case the X;s are i.id. with common parameters {¢, A), the convolution dis-
tribution reduces to

P(Z == ) = ¢ (2 = () +Z( ) P pnrle —M(’"’\)

This can also be written as

n
P(Z=2)=¢"I(z=0)+ Y _ P(Y, =r)P(Z, = 2), (2)
r=1

where Y, is Binomial with parameters (n,¢) and Z, is Poisson with parameter
rA. This can also be derived using a different method. One can start oud by
finding the conditional joint distribution of X1, X5, ..., X}, given g = 7 and the
marginal distribution of ng, where ng is the number of zero values among the
X;’s. It can be shown that the conditional joint distribution of Xy, ..., X,, given
g =] 18

-1 X n—j Em;
n e A
= vy A = Zplng =j) = . = .
P =1, - Sano = J) (J) (1"07"\) Ty =t
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Now, for 7 = 0, one observes that the conditional joint distribution of X1, Xs, ..., X,
given ng = 0 is the sanie as the unconditional joint distribution of n i.i.d. trum-
cated Poisson random variables X7, X5,.., X (truncated at zero), which is
given by

1 e—)‘A:L'{
PO =24 X = 2o = 0) = | [ 75 S0y
i=1 ’ "

Notice that this is free from ¢. From this, we can derive the conditional pmf of
Z =% X; given np =0 to be

P>~ X =klne = 0) = (’5"(”) (1—e X "P(Z, =k),

nk

where Z,, ~ Poisson(nA) and £,(k} is a known, parameter-free function. For
n =2, L(k) =25~ 2; for n =3, £a(k) = 3% — 3.2% 4+ 8, and so forth. In gencral
there is a recursive fornuila for &, (k) as follows:

SRS (§) st

I=n—1

Next, it can be shown that the conditional pmf of Z =377 | X; given ng = k is

PO X alno =) = 20—y )

where W has a usual Poisson distribution with parameter (n — &)X, This is
exactly the same as P(3 5, *X; = a | np = 0). Finally, one easily observes
that ng is Binomial with palamctcrs nand $-+- (1 — ¢)e™* and multiplying this
with the conditional pmf of Z = ¥ | X; given ng = k yields the unconditional
distribution of Z menticned earlier.

We now move on to conditional distributions, We start with the conditional
pmf of Xy given X; + X5, A little algebra will reveal that

. . . a+b
PX =4l X1+ X :’G):m,

where

d= (1 gpen 2L

c=2p(1L — ¢le W

L"

. k E
and cither ¢ = 0, b = ( ;" ) (%) dora= %, b= (%) d. In general, the

conditional pmf of 31" | X; given Y5 | X; (for m < n) involves both the pa-
ramecters and can not be expressed by such a simple formula. This is uunlike
the ordinary Poisson distribution where the conditional pmf of Y, X; given




>Tiey Xi =k (for m < n} is Binomial (k, 7). But, in the case of ZIP variables,
if we consider the conditional pmf of 31" X; given 3., X; = k (for m < n)
and ng == k*, then it furns out to be parameter-free, although not binomial. For
k* =0, it is actually symmetric. For example,

P(Xl == 1;X1+X2 = 2, o ﬁo) :1;

1
P(Xl :1|X1 +X2:3, HO:O)“—“P(XL 22]){1 +X2:3, ’I”I,D:O): 5,
(Xl —-—0]X1+X2+X3m2 ?‘Loﬁl)ﬁ = (X] _11X1+X2+X3#2 k) ul)
ete. The gencral formula for P(X; —I|X1 + Xo =k, np = 0) is given by
k _
POG =1+ Xa =k =0 = (] ) &1
Similarly,
k—l-1
PXy=lX1+Xo+ Xa=k,ng=0) = mzl “m[(k ),gd (k)
-1 il
(X1 + X=X+ X2+ X5 Ny ) mzlm‘(l_m)( __l)fa (k)

In general, for m < n,

P(ZX—IIZkanguO Z DD I le “31 & (k)

Im 1 Jnem *dnem

where 300 Li=1land 30 i =k—1L

=1

4 Parametric Inference for a ZIP Distribution

As mentioned earlier, the mean and the variance of a Z1P distribution are given

by
E(X)=(1-¢)x, V(X)=(1-¢)M1+44)

So, if Xy, X, ..., X, is a random sample from a ZIP distribution with parameters
(¢, A}, then 1— ))\( is an unbiased estimator for ¢ if X is known, wiereas T ‘i( is
an unbiased estimator of X if ¢ is known. But, in general, both ¢ and A will be
unlmown and there is no sample-based unbiased estimator for the parameter-
veetor {i, A). However, it is easy to obtain the method of moments (MOM)

estimators which are




x? nX?

1

)\MOM = EXi =1, ¢aroar =1— W

The sample likelihood function is given by

POILT
where ng is once again the number of zeros in the sample. From this, it is easy to

see that the maximum likelihood estimators for the parameters can be obtained
by solving

L, Mz, oy Tn) = (¢ + (L = p)e™H) ™ (1~ gl

. X . (no/n) - e“/.\MLI':
)\J\ILE - QSJ'IJLE =B
~ OMLE 1— e dazs

For this pair of equations, no analytic solution exists and it must be solved
numerically, which involves the Lambert’s W function (see, for example, Corless
ot al. (1993)). In Appendix 2, we report the results from simulation studies
conducted to explore the bias and the variance of the estimators mentioned
above as functions of the two parameters. Irom the likelihood function, it
should be clear that the 2 x 1 vector (np, Y, X;) is jointly sufficient for the two
parameters (¢, ). Tn fact, it can be shown thal they are minimally suflicient.

Now suppose that Xi,..., X, are Li.d. following a ZIP(4,, A1} distribution,
Yi,...,Y, are i.id. following a ZIP(¢ga, Az} distribution and we want to test
Hy : (@, A1) = (@2, Ag) versus Hy £, Let ng and myg be the counts of zero values
in the two samples. Under Hy, ng+myg has a Binomial{2n, ¢} pmf where ¢ is the
common value of ¢ and ¢a. If ng +myg is observed to be k and Y5, (X; +¥)
is observed to be k*, we reject Hy at the preassigned level o provided that the
test-statistic 77, X; exceeds the (1— 2)* percentile of, or falls below the &
percentile of the conditional pmf of Y5, X; given Yo (X; + ¥3) = &* and
ng+myg = k. Recall from the previous section that this conditional distribution
is parameter-free. In order to achieve an exact significance level of a, it may
be necessary to randomize this test. The statistics Z?__J (X;+Y;) and ng +mg
together induce a partition of the sample space and here we are conditioning
on those partition cells. If the conditional test is performed at level o, the
unconditional significance level is & as well, since P{Type I error | Hy) is equal
to

2n oo n 7

z Z P(Type Lerror | Hy,ngtmg =k, Z(X,-A—Yi) =Ek*).P{ng-+my =k, Z(X,--H",-) =k*)
fe=0 k= =0 i=1 im=1

This fest is, in some sense, a generalization of the one introduced hy Prazy-
borowski and Wilenski (1940} for the equality of two Poisson means.




5 The Conway-Maxwell-Poisson Distribution

The CMP distribution which is the abbreviated form of the distribution in-
troduced by Conway and Maxwell (1962) also looks like a variant of the ZIP
distribution under certain assumptions. Iere the probability mass function is
as follows:

AJJ
e 0o AR
(@) X ila (1?!)4

forz == 0,1,2, ... and A and ( are positive. For = 0,therefore, the probability is

P(X=xz)=

k
(Ez‘;n (]’}T . One can observe that for ¢ = 1, this probability distribution

is nothing but Poisson with parameter A. For { > 1, the probability at 0is bigger
than e~*, which may lead one to believe that the CMP distribution with ¢ > 1
is an example of a usual ZIP distribution. This, however, is not the casc because
for values of z > 0, the weight function associated with the pmf is dependent
on 2, unlike the constant weight function of a ZIP distribution. However, we
still discuss it here as a generalization of the usual Poisson distribution, whosc
zero-inflated version will be introduced later. We begin our discussion with the
distribution of the convolution of X1, Xs, ..., X, which arc ii.d. CMP (A, (). It
is given: by

P(};X,- k)= g’; Z Z (21 )c

for k=10,1,2, ... etc. This can also be proved by induction on n. Calculation of
the mean and the variance is complicated in this case and so is the derivation of
the method-of-moments (MM) estimators. It may be worth pointing out that for
¢ > 1, the CMP distribution is underdispersed, as opposed to the overdispersed
ZIP distribution.

Now let us look at the conditional distributions associated with the CMP .
The simplest one, namely, P(X; = I| X; + Xo = k) is given by

l <

(A)C
!
P(Xy =1 Xy + Xa = k) = oS

()

¢
Yo (l‘m'kylf ))
S Ve Y (i)

Going one step further, we get,

PXy =X + Xo+ Xa=k) =

1?21,5




where 45 + i + i3 = k. In genoral, we have,

P3O IEED IR (Z_ﬂ'_'}i'fﬁ)c
PID DL (ﬂm){

1

PXy =14 iXi =k} =

where 7, =k~ and Sy 21 =
Also, if we let P (L, £} = P(X ey Xi =1 S50, Xi = k) for m < n, then,

¢ ¢
k TR (k— 1)l
( { ) Zr‘ o -EI'" (ll- "'Zm-) le . ~Zj"' Lis (.Ti o 'jnﬁm->

B \¢
PRNEEED D) (%_1‘—1”7)
for 5::?" l wl E? 1m J; = — l, E?:1 Ty = k.
For a random sample of size n from a CMP population, the likelihood func-
tion is given hy

Pmn (!: 'I") =

AL

Hen e 0] = (e

where T((,A) = > pey (’b‘) Then the vector (], Xi!, 300, X;) is jointly

minimally sufficient for (¢, A). Now fet us write Y =[], ¥i = [T\-, Xi!. Then
Y; takes values 01, 11,21, ... ete., ie, 1,1,2,6,24, ...etc. As a result, if y is the
factorial of a nonnegative integer z, then

)fzh Zo

So, we can calenlate P{Y = y} where y is the product of n uniquely determined
factorials, say, the factorials of a1, .. ., z, (it is not necessary that all 1,..., z,
are different). Let y; = 2! for £ = 1,2,...,n. Suppose that the only distinct
numbers among Ty,...,Tn ATC Z1,...,2;. Let n; be the number of times z; is
present for ¢ = 1,2,...,k, so that 3" n; = n. Then we have

P(l’:y) ﬂl‘ﬂz nk' H ( 2‘31)§ zl U'f\—)

which is the same as

PYi=y)=P(Xl =ul) = P(X; = 2} =

n! PO
nylngt - ongt ([T, 2000 (¢, A)

PY =y) =




6 Zero-inflated Conway-Maxwell-Poisson distri-

bution
The zero-inflated CMP distribution is defined as
1
PX=0=d+(1—¢
/\k
B¢
and P(X = k) = (1 ) ‘F(@)/\)

for0< ¢ <landkh=1,2,---, where ¥({, A} is as in the previous scction. Then
the convolution distribution for two ii.d. ZICMP random variables is given by

P(X1+X2:0)2(¢+(1—¢) ! )
)\’” Ak & N
ond P14 X = ) = 2000 )ty + (1~ )(m(fx))ZZ(?) |
¢

D
In general, if we denote G, o(k,{) = P iman | i (z_lkl_?r) , then woe

m+1 "
have
P(;Xi_ = k) = 2 ( :; ) i,\;,: (¢+ (1-¢) I, A))m (q}(; f))"_me,n(k,g).

If we condition on the event ng = 0 where ng is once again the munber of
zero-values, the conditional pmf of E?:I X; has a somewhat simpler form. Of

course, ng itself is binomial with probability of success p = ¢ + (1 — ¢) T (é VL
2 ¢
I .

In general,

s =im =0 =g (i) 2T ()

where each #; is positive and iy +---+ 4, = k. Also, as in Scction 3, it can be
shown that P(30, X; =k | ng = j) is the same as P{} 1} FX; =k |ng=0)
As for the conditlona] joint pmf of Xy,---, X, given ng = 0, 1t is

The simplest case is

/\k 1 k-1
PXy+ X =k|ny=0)= (EN< (\y(c,A) - 1) Z (

=1

A2 1 n
PO =wa o Ko =anlno = 0) = i (@(g X - 1)

10




and, as was the case in Section 3, it turns out to be the same as the unconditional
joint pmf of n 1.i.d. zero-truncated CMP random variables. Next, as in the case
of a usual ZIP distribution, we derive the conditional pmf of X, given 3.1 | X;
which is

PO RPN (H’E‘Ju—lf)€

n
P(X;:lx|ZX1::k,no:0): J -k1 o
P PN SMESES S (W)

with 30 o li=k—land > @ 3=k
Also, if we denote p,,, (k) = PO, X =8 30 X;i =k, ng =0) for
m < n, then,

(IZ-)CE;]-..ZJW (m%;[)(zjl,,,z_“_m (J‘ﬁ(i‘_j:)j—mr)g

for 30 =1 Yo" ji=k—1, 3 2 =k These formulas arc cxactly
same as that of nsual COM-Poisson.

Pm,n (I) k) =

7 Generalized Zero-Inflated Poisson Distribution

Angers and Biswas {2003} intoduced the following version of a generalized zero-
inflated Poisson {(henceforth GZIP) distribution:

PX =0)=¢+ (1~

(L+ak)! (Ae®N)*
k! et

and P(X =) =(1—¢)

for k = 1,2, ... with the parameters satisfying the restrictions (1—e )™t < ¢ <
LO<a< At andA > 0. So, a new parameter o comes into the picture. It is
casy to scc that choosing o = 0 brings ns back to the original ZIP distribution.
See the appendix for a proof of the fact that >, P(X = k) =1 and that the
mean and the variance are given by

Al -¢)

B(X) = 1—ai

and
P(1 — g)A* n (1 — A
(1—aX)®  {d-aX)?

The sample likelihood function is given by

V(X)=

n . yTi—1
Ly Ao, 2a) = (1= @) (1=g)e o e oy S [ LE W
i=1

!

11




The 3x 1 vector (ng, 3oy Xi. [[ieq (1-+an)* ) is jointly minimalty suflicient
for the three parameters (o, ¢, A).

Under this set up, the pmf of X{ + X5 will be

R
ane Lt 50

P(X1+ X2 = k) =26(1 ~ $)P(Ur = k) + (1~ $)°P(Us }”){ 1+ ka

, where U; ~ GP(w, jA) for j =1,2 and GP(g,b) is the pmf given by

(1 - a.k)kﬁl efabkbk
k! el

PU=0)=e" PU=k)=

for positive integer valucs of k.
An alternative expression for the pmf of X + X5 is

P(Xy + Xz = k) = 2¢(1 — $)P(V1 = k) + (1 — ¢)*P(Vi + Vo = k)

where V; ~ GP(a, A) for j =1,2. We can go two steps further and obtain the
pmfs of Xy + X5+ X3 and X + X3 + X3 + Xy as follows:

P(Xl +X2+X3:k) :3P(X1 iO)P(Xz"?"X;; 2’\7)

I+ka (o) s e
g > TR ey,

ke k2 ks A0 i=1

where the sum is over all positive integers &y, ka, k3 adding up to k. This sim-
plifies to

P(Xi+Xo+X3 = k) = 6(1—)[p+(1—g)e | P(Vi = k)+38(1—9)* P(V1+Va = k)
H1 - )PPV +Va+ Vi = k).
Next,
PXi+ X+ Xa+ Xy = k) =4P(X; = 0)P(Xo + Xz + Xy = k)

SRR LD H a + g MAtak) k-

ky B2 ks ka A0 i1

where the sum is over all posibive inbegers Ky, ko, k3, k4 adding up to k. This
simplifies to

P{X1 + Xo+ X3+ Xy = k) = 246(1 ~ }[d + (1 — $)e 2 P(V; = k)

+12¢(1 — ¢)’[p + (1 — d)e IP(Vi + Vo = k)
+4d(1 - $P PV + Vo + Ve = k) + (1 — ¢)1P(Vi + Vo + Va + Vi = k).

12




In general, by induction on n, we can prove that

n—1
Pt X = k) = 3 P (1P [pH(1—g)e I P (Vi 4V = k)
j=1

1= @) P(Vi+- 4+ Va= k).
Suppose we have proved this for n. Then, we can prove this for n+1 as follows:
PXi+ 4+ X+ Xpm = =0+ DPXy =0P(Xy+ -+ Xy = k)

41l

+ Z H (1 + 4k 0‘) { . ¢)n+1e—)«l(n+1)+kal/\k
Fygoeren o410 i=1
n—1
= (n+Dp+(1-d)e M "Pumy $(1—¢) [$+(1—¢)e " T P(Vit- - 4V, = k)
=1

n+k
+(A=g)"P(Vi+ - +V, = k)]+ Z 11 (H"]"“ (1 —g) e Mlnt)thel yk
kyyereeeep g1 #£0 i=1
n—1

=D "M Pu 60— Yo+ (1 - Qe PIPV 1V = R)
i=1

H(n+1)p(1 = §)"P(Vi+ -+ + Vi = k)
+(n+1)(1— qﬁ)"“e_"P(Vl bk Vi = k)
o+ Z ﬁ (1 +£; Q) ( - Cb)u+1B—)\[(1r1+1)-|--1‘cc)f])\k

Ry ymmeens Wnp1#0 =1
_Z "Puti-i (1 — )Y [p+ (1 — @le TPV 4+ + V= k)

{1 — )"+1P(Vl+“‘+Vn+Vn+1:k)

8 Bayesian Inference for a ZIP Model

Bayesian analysis of an ordinary Poisson model uses a Gamma density as a
conjugate prior on the mean parameter A, Bayesian analysis of a CMP model has
been discussed by Kadane ot al. (2006) and that for a generalized Poisson model
can be found in Angers and Biswas {2003). Ghosh et al. (2006) infroduced
a zero-inflated power series (ZIPS) model which includes the ZIP model as a
special case and carried out a Bayesian analysis under a generalized linear model
setup with covariates. They used a Beta prior on the zero-inflation parameter ¢
and an appropriate prior on A that is conjugate for the power series model. Here
we adopt a different approach. First we describe a Bayesian hierarchical model

13




that leads naturally to a method of two-sample (or multi-sample) comparison.
Then we present a conjugate Bayesian analysis for the sum of {conditionally)
iid. ZIP random variables.

Suppose we have independent samples from J ZIP populations, say, repre-
senting the counts of individuals who respond in a particular way to J different
treatments administered independently KX times. Let Y be the k™ replicate
count observed under the §* treatment (§ = 1,...,Jand k = 1,..., K). We
assume that ¥y, ~ Z1P(p, Ajg). In other words,

pr(Yie = g) = ¢I(y = 0) + (1 — $)P(Yy, = y) (3)
for some 0 < ¢ < 1, where Y}, ~ Poisson(};x). Then we model log(A;) as
log(Aje) = Bi + €5 (4)

where €1, is the randem residual component following Normal(0, ¢2). The use
of a residual component in the link-funetion specification is consistent, with the
belief that there may be unexplained sources of variation in the data, perhaps
due to explanatory variables that were not recorded at first. This is particularly
appropriate for Poisson data sets with over-dispersion. The use of residual
effects within GLMs is discussed in Sun et al. (2000) and is a special case of the
class of generalized linear mixed models (Zeger and Karim, 1991; Breslow and
Clayton, 1993). Equation (3) boils down to

log(Aji} ~ Normal(8;, 52} (5}

where §; is the eflect of the 5** treatment. We use conjugate priors in this hicr-
archical model and center the parameters for efficient MCMC sampling (Gelfand
et al.,1995). Let AZG be the Normal-Tnverse Gamma family of conjugate distri-
butions in which, the mean follows a Normal distribution conditionally on the
variance and the variance marginally follows an Inverse-Gamma distribution
with the hypor-prior parameters u and v having the appropriate subscripts. In
other words,

f,a% o NIQ(QO,Uz,u,U) implics that
8la® ~ MN(8g,0?) and
o ~ TG{u,v)
With this notation in mind, this is how we specify our priors:
ﬁj7a,§ ~ NIQ(#'?JS1uﬁ,I:”G,ﬁ)
y,o*ﬁ ~ NIQ(,{L[},O“%,’MHJ, Upr)

However, Lhe specification of the zero-inflalion parameter makes the sampling
frow the {conditional) posterior distribution extremely difficult. Agarwal et al
(2002) and Ghosh et al (2006} cleverly handle the problem by introducing a la-
tent variable. In the present context, denoting the latent variable corresponding
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to Yji by Z;, the complete likelihood of the data is L(y, z | ¢, A} =

. P-zip
=X\ Yik Ik
e AT }

LT G L
e {o -0
or, equivalently, L{y, z { ¢,\) =

c—:*’\i’*‘,\ﬁk

[T eyt 9

Yjp=0

s gy 1

TP
k>0 Yik

where ng == Zj Yopzipand n = JK.
We assume a Beta(a, b) prior on ¢ and elicit conjugate priors for all the
variance parameters. In summary, our hierarchical modei is given by:

Yo~ ZIP(¢,Ajx)
¢ ~ Beta(o,b)
log(0k) ~ Nommal(s;, %)
JE ~ IQ(T%,«,’U;{”)
Bivoh ~ NIG(u,0fupmUs,x)

2 2
B0 ™ NIG{po, O s Uy Vpn)

Sampling from the posterior distributions can be performed using a block
Gibbs sampler. All the conditional distributions except for those of the A-
values and ¢ have conjugate forms. Using latent variables has the advantage
that sampling from the conditional distribution of the zero-inflation parameter
reduces to sampling from its conjugate distribution. However, a Metropolis-
Hastings step is needed for drawing the A-values and a log-Normal proposal
distribution will work. We would prefer using relatively flat priors for ali the
variance parameters.

Next we move onto a conjugate Bayesian analysis of Z = E?;1Xi where
Xy,-.., X, are conditionally 1.i.d. ZIP (A, ¢} variables given the parameters.
One can assume that

(i} A has an a priori I'(js, o) density given by

LY S PRy
for A > 0 and a positive integer o;
{1i) ¢ has an a priori Beta(a,b) density for some ¢ > 0 and b > 0 (one can
choose ¢ = b = 1 yielding a U(0, 1) prior);
(iii) A and ¢ are independent, in which case the joint prior density denoted
by A(A, ¢} will be the product of the above two.
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Then, if { Xy, X3, -, X, ]} is a sample of size n from the p.m.f in (1), which
implies that Z = 3% | X;, will have the pm.f. P(Z = z| A, ¢} in (2), one does
the usual posterior calculation and gets the following, The unconditional or
marginal distribution of Z is

]_ n
I(z=0)+ ) ;P(N,. = z),

where N, is negative binomial with parameters (a-, Tf—%ﬁ) The posterior
joint distribution of A and ¢ is given by

[6"1(z = 0) + 3"_, P(Yp = 1) P(Z, = 2)] f,%,\““le“"‘\
Iz =0)+ 1" P(N, = 2)

R (A, ¢l 2) =

APPENDIX

Appendix 1A: Probability mass function of the GZIP distribution
Consider the paper by Consul and Jain (1973). They mtroduced a generalized
Poisson distribution as follows:

P(X = a| A, he) = M (A + mhg)? lem Bateda) f)
for @ =0,1,2,. .. so that
})LX-:imlAl,Ag) =10
for & > m if A1 +mAe < 0. But in our case, it is good enough to consider A > 0
so that P(X = z| Ay, Ay} is never zero. One can observe that putting Ay = 0,
we can get back the usual Poisson distribution.

Consul and Jain referred to Jensen {1902) for proving that P(X = x| A1, A2) =
1. They used one-dimensional Lagrange’s formula to prove this:

o0 z—1 T
06 =90+ 3 5 (e (56) ®
where ¢(2) = eM? and f(z) = e**. Now it can be shown that
dm71 e =1
(=@ G = nti+

so that (8) becomes

M=y %)\1(’\1 + dgz)T! (ﬁ) X

T=0

This is true for all z. So, substituting z = 1, we get
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o0

1 w—1 —Agx
eM = Zﬂ 5 (A 4 Ay e

which implies

=)

1 1 x

1= ZD ; z\;(/\g + /\23,)'L ! e (a+iaz)
2=

so that the right hand side is nothing but Yo7 ) P(X = | A1, Az). Now substi-

tuting Ay = A and i—? = q in our write up, we get

P(X = 2] 0, 0) = 2o (1 + aa=te~(ra)A

@
al

which is nothing but U ~ GP(a, A) in our notations. So, it is proved that

i o g
ZP(X =z|Aa) = Z :\:E?"(I + az)e—lem(hamd =
i=0 i=0 "

Therefore, if we go to zero-inflated generalized Poisson distribution where
Az .
PX=0)=¢+(1=d)e ™ PIX =a) = (1 = §)[ S5 (1 + o)™ e 0o

for > 0, then we get
SoP(E=0) = gt (1= §) Y 51+ aa)te(Fod oy
i<} izo *

Appendix 1B: Expectation of a GZIP distribution

Here we derive the mean of a zero inflated generalized Poisson distribution. For
this, we go back to the paper by Consul and Jain (1973) and work with (9).
Consul and Jain have their own way of dealing with this as they arc allowing
negative vatues of Ag. In onr case, we can simply differentiate {(9) and arrive at
the following:

i A ()\1 + )\zﬂ,‘)m-l

Az
Mue T

297 e o) (10)

w=1

which is same as

A i A (Ar + Aoz)®H 51 g= Ot Aao)e

Now putting z = I once again, we get
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Moo M) g g
T- “2 (-1 °

Onc can observe that the right hand side is the expectation of X so that B(X) =
——JX— Substituting Az = , one can see that it is the mean of the usual
Pmsson distribution. Now, coming back to the gcncrahzcd Poisson distribution

U ~ GP{a,X), we get, B(X)} = )‘ (1+a' e~ (o)A )\ . For

zero-inflated generalized PO]b‘iOﬂ dlsm ibutlon ‘the expectation is gwen by

- 2 AT(1 A+ )™t —(1+az)) A1 — &)

B(X) = (1 ¢); e =T
Substituting ¢ == 0, we get the mean of the usual generalized Poisson distribution
back.

Appendix 1C: Variance of a GZIP distribution

Our next goal is to get the variance of the zero-inflated generalized Poisson
distribution. For this, we again go back to the equation (10). We differentiate
it once morc to geb

x SgE—k 0 SE—1
A?CAIZ — Z %22—26—)\2:&: (1_/\2z)2_z %"_)__Zw—le—)\zsz2(2_Azz)
i=2 ’ i=1 ’

which simplifies to

o x—1 oo 21
)\2 — Z )\1 (A(l‘r:;)‘;;) zm7267(>\1+)ﬂzm)z(1_/\2?;)2__2 %zmulGM(A1+A2:U)Z/\2(2~,\2Z)
) i=1 ’

1=2

Substituting » = 1, we get

S WSV S PE L o A (A + dpa)Eml m
,\%:Z 1( (l’rm??}'l;) e (/\1+f\2--)(1_/\2)2_2 1( 31_12;) e (A1+Are )}\2(2—)\2)
(11}

Now the second term without the negative sign is just E{X) multiplied by
A2(2 — Ag) and hence {11} becomes

i=2 i=1

= AL(AL + Agz)el Ada(2 - A2)
2_ 1Al 2 —{Xitdem) g 2 A2 2
A1 2 (x_2j ° (1= Aa) 1 g

IFrom this, one shows that

i Afda + Agw)* o= atrez) _ y AL n A2(2 ~ Ao)
(z —2)! R FTSS W R P W

i=2
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Now the left hand side is nothing but F[X (X — 1)] in Consul and Jain's set up.
Adding F{X} to it, we get

A2 M
(1=2)2 (1= A)?

E(X?) =

Finally, subtracting [E(X)]? from it, we get

A1

MR R

Substituting Az = 0, we get back the variance of the usual Poisson distribution.
Now, considering the usual peneralized Poisson distribution with U ~ GP{a, A},
we get

A a2 — a)\)]

BX(X-1))=M [(1_0/\)2 + (ES\E

so that 32 \ \
V(X)) = ———
Aoz T o V) = Gy
Next, considering the zero-inflated generalized Possion distribution, we get
A + aA(2 —ah)
(I-ad)?  (1-a))3

E(XH =

BIX(X - 1] = (1 $)) [

Adding E(X) = %—:—fgﬁ to both sides, we get

A 1
2 —(1 -
BOC) = (1= O |t e
Finally, subtracting (E(X))? from hoth sides, we get

pL-gN?  (1-¢)r
T (1 -arp

VX)) =

Substituting ¢ = 0, we get back the variance of the usual generalized Poisson
distribution back.

Appendix 2: Simulation results for biases and variances of estimators
For the maximum likelihood and method-of~moments estimators of A and ¢ that
we mentioned in Section 4, here we report the results of some simulation studies
regarding their bias and variance. For a fixed value of ¢ € (0, 1), we generated
M = 1000 random samples of size n = 100 from a ZIP(¢,}} distribution with
A = 2,3,...,10 and each time computed the bias in the method-of-moments
estimatar for A. For each A, we then averaged the 1000 bias values and plotted
this average bias against A. Also, for each A, we computed the sample variance of
the 1000 A aronr values and plotted it against A. We repeated this exercise for 9
different values of ¢ and the resulting 9 ‘X vs. average bias’ graphs, represented
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hy differend. colors, were superimposed. Similarly, the 8 A vs. Vﬂl’(iﬂz{@j\{),
graphs, represented by different colors, were superimposed.

Next we implemented the same procedure with the roles of A and ¢ switched.
In other words, we now fixed A at an integer value between 2 and 10 and in
each case, created a ‘¢ vs. average biag’ graph and a ‘@ vs. var(quSMo ) graph
based on A = 1000 random samples of size n = 100 drawn from a ZIP{¢,\)}
distribution with ¢ = 0.01,0.02,...,0.09. Once again, cach of the two resulting
sets of O graphs (represenied by different colors) were superimposed.

Subsequently, the same procedure was repeated for the MLEs of A and ¢,
resulting in 4 sets of graphs which are A vs. avg(x MLE — A), A vs. \ral‘(j\ MLE),
¢ v. avg(dyre — ¢) and ¢ vs. var(dape).

Finally, all of the above were carried out again with Ad = 10000. 1t is clear
that the MLEs of both parameters are asymptotically unbiased. For Az the
bias is quite close to zero even for moderate values of A such as 6 or 7. In the
case of qﬂi mLE, the bias is negligible irrespective of ¢ for A upwards of 5. The
variance of Ayrr g, for the valuc-range of A considered here, are below 0.4 except
for some extreme values of ¢. Also, it shows a slight increasing trend with A
As for the variance of qABMLE, the only one that stands out is the case A = 2.
Whether this aberrant behavior was caused by a computational error needs o be
investigated. Moving on to the bias and the variance of Apsoa, the bias shows a
lot more fluetuations in this case than for the MLE, but it is close to zero except
perhaps some extremely small values of ¢. The variance of Aaron once again
shows a slight increasing trend with A and is below 0.4 over this value-range of A
except for some extremely small values of . The bias in ¢dproar also shows more
fluctuations compared to that in the MLE and the variance of qASMO A shows a
concave quadratic trend with the maximum occurring around the mid-range of
¢ {except for some small values of 1)
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